2017年第四季度危险废物国控企业废气主要污染物监督性监测结果

区县	企业名称	监测点位		<u> </u>	排放浓度	标准限值	排放单位	是否达标	
<u> </u>	正业省例	血侧从江	血侧口剂	<u> </u>	雅双孤是 33	<u> </u>	排及单位 mg/m³	是	超标倍数
				砷、镍及其	აა	00	IIIg/III	上 上	
				化合物	0.0004	1	${\rm mg/m^3}$	是	_
				二氧化硫	9	300	mg/m³	是	_
	河北中润			<u></u> 氮氧化物	32	500	mg/m	是	_
栾城县	生态环保		2017-12-8	铅及化合物	0. 08	1	mg/m	是	=
	有限公司	炉		镉及化合物	0.004	0. 1	mg/m ³	是	_
				林格曼黑度	<1	1	级	是	_
				氟化氢	<0.06	7	mg/m^3	是	=
				氯化氢	6. 85	70	mg/m	是	
				烟尘	40	80	mg/m^3	是	_
				砷、镍及其 化合物	0. 267	1	mg/m³	是	_
				二氧化硫	20	300	mg/m^3	是	_
	石家庄翔			氮氧化物	22	500	mg/m	是	=
赵县	宇环保技	焚烧炉	2017-11-8	铅及化合物	0.17	1	mg/m^3	是	=
/ 4	术服务中	J C/J G//			<0.00000				
	心			镉及化合物	3	0. 1	mg/m³	是	_
				林格曼黑度	<1	1	级	是	=
				氟化氢	<0.06	7	mg/m³	是	_
		4 11 3K-3-B		氯化氢	2.04	70	mg/m³	是	=
ļ		1#常减		二氧化硫	2	100	mg/m³	是	-
		压加热		氮氧化物	59	150	mg/m³	是	_
		1#常减		二氧化硫	3	100	mg/m³	是	_
		压加热		氮氧化物	60	150	mg/m³	是	-
		炉2#		颗粒物	9	20	mg/m³	是	_
		.,.,,	2017-11-30	1 1 7 7 10	3	100	mg/m³	是	-
		压加热		<u></u> 氮氧化物	78	150	mg/m³	是	-
		炉		颗粒物	5	20	mg/m³	是	_
		220万吨		二氧化硫	3	100	mg/m³	是	_
		/年催化		<u></u> 氮氧化物	64	150	mg/m³	是	
		再生烟		颗粒物	6	20	mg/m³	是	=
		260万吨	0015 10 00	<u></u> 氮氧化物	75	400	mg/m³	是	_
			2017-12-22		6	400	mg/m³	是	
		加氢加		颗粒物	7	50	mg/m^3	是	=
		3万吨硫 磺吸收 装置尾		二氧化硫	3	100	${\rm mg/m^3}$	是	-
		42单元		二氧化硫	2	200	mg/m³	是	_
		废液焚		氮氧化物	17	500	mg/m	是	_
]		烧炉		颗粒物	4	-	mg/m^3		=
		8万吨/ 年硫磺 回收尾		二氧化硫	30	960	mg/m³	是	-
		C = 0 = 1 - 1 =	2017-11-30	二氧化硫	3	100	mg/m^3	是	-
		Szorb加		氮氧化物	17	150	mg/m^3	是	_
		热炉		颗粒物	5	20	mg/m^3	是	Ι

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
	中国石油	胺肟化			711/04/1/22		*****	7 - 11 - 11	7-17 1522
	化工股份	装置尾		声声 //	0.1	150	/ 2	ы	
藁城市	有限公司	气(化纤		氮氧化物	61	150	mg/m^3	是	_
	石家庄炼	公司)							
	化分公司			二氧化硫	4	100	mg/m^3	是	_
		二制氢 转化炉		氮氧化物	49	150	mg/m^3	是	-
		村化炉		颗粒物	5	20	mg/m^3	是	_
		航煤加		氮氧化物	57	400	mg/m^3	是	_
			2017-12-22		12	400	mg/m^3	是	-
		炉		颗粒物	7	50	mg/m^3	是	_
		焦化加		二氧化硫	4	100	mg/m^3	是	_
		热炉1#		氮氧化物	82	150	mg/m^3	是	_
				颗粒物	7	20	mg/m³	是	_
		蜡油加		二氧化硫	3	100	mg/m³	是	-
		氢加热		氮氧化物	71	150	mg/m³	是	=
		炉		颗粒物	5	20	mg/m³	是	=
		连续重		二氧化硫	4	100	mg/m³	是	_
		整方形		<u></u> 氮氧化物	50	150	mg/m³	是	_
		连续重		二氧化硫	4	100	mg/m³	是	=
		整圆筒	0017 11 00	氮氧化物	52	150	mg/m³	是	_
		y.0104 F4	2017-11-30		00	100	/ 3	Ħ	
		置尾气		二氧化硫	29	100	mg/m^3	是	_
		(化纤公		一层儿坛	1	100	/3	目	
		一制氢 加热炉		二氧化硫 氮氧化物	4 18	100 150	mg/m^3 mg/m^3	<u></u> 是	_
		7/13/47/P		二氧化硫	5	100	mg/m³	 是	
		一制氢		<u>二氧化烷</u> 氮氧化物	51	150	mg/m ³	 是	_
		转化炉		颗粒物	5	20	mg/m ³	是	
		渣油加		二氧化硫	3	100	mg/m ³	 是	_
		氢加热		氮氧化物	74	150	mg/m	是是	_
		炉		颗粒物	6	20	mg/m	是	_
		150吨热		水火 有五十分	0	20	mg/ m	Æ	
		轧部侧		颗粒物	5. 1	15	mg/m^3	是	_
		吸二次		75/12 13	0.1	10		,	
		150吨热							
		轧部铁		颗粒物	7. 3	15	mg/m^3	是	-
		水倒罐			-		G,		
		150转炉							
		二次尘		颗粒物	5	15	mg/m^3	是	=
		顶吸							
		3200高							
		炉出铁		颗粒物	4.9	15	mg/m^3	是	-
		厂东	2017-11-1						
		3200高							
		炉出铁		颗粒物	4.6	15	mg/m^3	是	-
		厂西							
		3200立							
	唐山钢铁	方米高		颗粒物	3. 9	10	${\rm mg/m^3}$	是	-
	店 田 W I K	炉矿槽							
l	隹囝右阳	がが慣	l l						

区县	企业名称 未四年 [17]	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
路北区	东西有限 责任公司			二氧化硫	70	180	mg/m^3	是	=
	(南区)	320平米		铅及化合物	0.036	0.7	mg/m^3	是	-
	(用位)	烧结机		颗粒物	15. 5	40	mg/m^3	是	_
		头		氟化物	0. 163	4	mg/m^3	是	_
				氮氧化物	132	300	mg/m^3	是	=
		360平米 烧结配		颗粒物	6. 4	20	$\mathrm{mg/m^3}$	是	-
		360烧结 机成品	2017-11-7	颗粒物	4. 1	20	mg/m^3	是	-
		360烧结 机机尾		颗粒物	5. 1	20	mg/m^3	是	_
		55转炉 3#二次 尘	2017-11-1	颗粒物	4	15	${\rm mg/m^3}$	是	-
		一亩姥		二氧化硫	22	150	mg/m^3	是	=
		二高线 加热炉	2017-11-14	氮氧化物	112	300	mg/m^3	是	-
				颗粒物	4.1	15	mg/m^3	是	=
		炼铁高 炉干煤	2017-11-7	颗粒物	4. 9	10	mg/m³	是	-
		分板工	2017-10-13	铅及化合物	0.152	0.5	mg/m^3	是	_
		序	2017-12-12	铅及化合物	0.159	0.5	mg/m^3	是	_
		硫酸雾	2017-10-13	硫酸雾	0.52	5	mg/m^3	是	_
		净化塔	2017-12-12	硫酸雾	0.51	5	mg/m^3	是	=
	唐山风帆	铅粉工	2017-10-13	铅及化合物	0.122	0.5	mg/m^3	是	=
古冶区	宏文蓄电	序	2017-12-12	铅及化合物	0.12	0.5	mg/m^3	是	_
	池有限公	涂板工	2017-10-13	铅及化合物	0.152	0.5	$\mathrm{mg/m^3}$	是	_
	司	序	2017-12-12	铅及化合物	0.147	0.5	mg/m^3	是	_
		铸板工	2017-10-13	铅及化合物	0.344	0.5	$\mathrm{mg/m^3}$	是	_
		序	2017-12-12	铅及化合物	0.317	0.5	mg/m^3	是	_
		装配工		铅及化合物	0.243	0.5	$\mathrm{mg/m^3}$	是	_
		序	2017-12-12	铅及化合物	0.251	0.5	mg/m^3	是	=
		1号退火		二氧化硫	58	150	mg/m^3	是	_
	唐山宏文	炉		氮氧化物	61	300	mg/m^3	是	_
古冶区	冷轧不锈	Ŋ,	2017-11-18	颗粒物	8.5	15	mg/m^3	是	-
НИЦ	钢有限公	2号退火	2011 11 10	二氧化硫	51	150	mg/m^3	是	-
	司	炉		氮氧化物	75	300	mg/m^3	是	_
		**		颗粒物	8.3	15	mg/m^3	是	_
丰南区	唐山国丰 第一冷轧	酸洗槽 碱洗槽	2017-12-12	氯化氢	8. 34	30	mg/m^3	是	-
十円匹	镀锌技术 有限公司	酸再生 二级焙	2011 12 12	氯化氢	7.89	50	mg/m^3	是	_
 	唐山洁城			二氧化硫	43	100	mg/m^3	是	_
丰南区	能源有限	焚烧炉	2017-12-4	氮氧化物	85	300	mg/m^3	是	-
	公司			颗粒物	17.4	30	mg/m^3	是	=
丰南区	唐山市丰 南区群利 金属制品 有限公司	喷淋洗 涤塔	2017-11-15	氯化氢	5. 354	20	${\rm mg/m^3}$	是	-
丰南区	南区群利		2017-11-15	氯化氢	5. 354	20	mg/m^3	是	

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
		酸雾吸		复业与	4 02	20	/3	目	
		收塔01		氯化氢	4. 93	20	mg/m^3	是	_
		酸雾吸		复业层	4. 36	100	/ 3	Ħ	
		收塔02		氯化氢	4. 30	100	mg/m^3	是	
	再小正元	酸雾吸		复业与	F 97	100	/3	目	
丰富区	唐山正元 管业有限	收塔03	2017-11-16	氯化氢	5. 27	100	mg/m^3	是	
丰南区	公司	酸雾吸	2017-11-10	复业与	6. 47	100	/3	是	
	公司	收塔04		氯化氢	0.47	100	mg/m^3	定	
		酸雾吸		复ル写	4. 87	100	/3	是	
		收塔05		氯化氢	4.07	100	mg/m^3	疋	_
		酸雾吸		氯化氢	5. 9	100	m or /m3	是	
		收塔06		永化刭	5. 9	100	mg/m³	疋	_
	唐山市丰			氮氧化物	101	400	mg/m^3	是	_
丰润区	丰冷轧带	退火窑	2017-12-4	二氧化硫	22	400	mg/m^3	是	_
	钢有限公			颗粒物	16. 9	50	mg/m^3	是	_
	唐山市丰			氮氧化物	35	400	mg/m^3	是	_
丰润区	润区鸿翔	退火窑	2017-11-22	二氧化硫	10	400	mg/m^3	是	_
	金属制品			颗粒物	6. 15	50	mg/m^3	是	_
	唐山市丰			氮氧化物	66	400	mg/m^3	是	_
丰润区	润区金源	退火窑	2017-11-22	二氧化硫	26	400	mg/m^3	是	_
	精密铸件			颗粒物	6. 28	50	mg/m^3	是	-
	唐山市丰			氮氧化物	140.7	400	mg/m^3	是	_
丰润区	润区立丰	退火窑	2017-11-30	二氧化硫	23	400	mg/m^3	是	_
	金属制品			颗粒物	13.8	50	mg/m^3	是	_
	唐山市丰	六号线		氮氧化物	124.3	400	mg/m^3	是	_
	润区昇泰	退火窑		二氧化硫	25.6	400	mg/m^3	是	_
丰润区	金属表面	返八缶	2017-11-30	颗粒物	13	50	mg/m^3	是	_
十四区	並 属 衣 面 处 理 有 限	七号线	2017 11 30	氮氧化物	98	400	${\rm mg/Nm3}$	是	_
	公司	退火窑		二氧化硫	17	400	${\rm mg/Nm3}$	是	_
	- Z H	返八缶		颗粒物	14.7	50	mg/m^3	是	_
	唐山市丰			氮氧化物	174.3	400	mg/m^3	是	_
丰润区	润区顺德	退火窑	2017-11-22	二氧化硫	57. 7	400	mg/m^3	是	_
	冷轧带钢			颗粒物	14.3	50	mg/m^3	是	_
	中车唐山			二氧化硫	77. 7	200	mg/m^3	是	_
丰润区	机车车辆	锅炉	2017-11-28	氮氧化物	191.3	200	mg/m^3	是	-
	有限公司			颗粒物	25	30	mg/m^3	是	-
		白灰窑	2017-10-20	颗粒物	19. 4	30	mg/m^3	是	-
		窑顶除	2017 10 20	A央不弘 1/0	13.4	50	mg/m	足	
		高炉出							
		铁厂二	2017-10-19	颗粒物	9. 5	10	mg/m^3	是	_
		次烟气	2017-10-19	木贝木丛 17 0	9. 0	10	IIIg/III	走	_
		除尘器							
		高炉出							
		铁厂一	2017-10-19	颗粒物	8. 1	10	mg/m^3	是	_
		次烟气	2017-10-19	木贝科丛 17 0	0. 1	10	mg/m	走	_
		除尘器							
		高炉料							
		仓仓上	2017-10-20	颗粒物	8.4	10	${\rm mg/m^3}$	是	-
		除尘系							
-	•								

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
		炼钢转							
			2017-10-19	颗粒物	10.4	15	${\rm mg/m^3}$	是	_
		除尘1#							
		炼钢转							
			2017-10-19	颗粒物	7. 1	15	mg/m^3	是	_
	首钢京唐	除尘2#		11 ·					
# 17 /	钢铁联合	烧结机	0015 11 1	二氧化硫	34	160	mg/m³	是	_
曹妃甸	有限责任	机头电	2017-11-1	颗粒物	11. 5	40	mg/m³	是	_
	公司	除尘器2		氮氧化物	211	300	mg/m^3	是	-
		烧结机	2017-10-19	二氧化硫 颗粒物	56	160	mg/m ³	是是	_
		机头电 除尘器3		類型物 氮氧化物	20 167	40 300	$\frac{\text{mg/m}^3}{\text{mg/m}^3}$	是	_
		烧结机 烧结机		二氧化硫	27	160	mg/m³	是	
			2017-11-13		24. 3	40	mg/m ³	是	
		除尘器4	2017 11 13	氮氧化物	196	300	mg/m ³	是	_
		烧结机		二氧化硫	46	160	mg/m ³	是	_
			2017-11-1	颗粒物	10. 5	40	mg/m	是	_
		除尘器		氮氧化物	227	300	mg/m	是	_
		烧结机		英(平(101)	221	000	1118/111	~	
		机尾及		ment to high state					
		环冷除	2017-10-20	颗粒物	16. 4	20	mg/m^3	是	_
		尘器烟							
		自备电		氮氧化物	25	100	mg/m³	是	_
		站烟囱	2017-10-19		3	35	mg/m^3	是	_
		1#机组		烟尘	2.6	10	mg/m^3	是	=
		自备电		烟尘	5.6	10	mg/m^3	是	_
		站烟囱	2017-11-13	二氧化硫	3	35	mg/m^3	是	-
		2#机组		氮氧化物	29	50	mg/m^3	是	_
		C、D炉		二氧化硫	16	50	mg/m^3	是	_
		出焦除	2017-10-20	2(1)(10)/4	0	500	mg/m³	是	_
	唐山首钢	尘		颗粒物	9.8	50	mg/m³	是	_
曹妃甸	京唐西山	C、D炉	0017 10 10	二氧化硫	21	50	mg/m³	是	_
	焦化有限		2017-10-19	211117-77	99	500	mg/m^3	是	_
	公司	タ 年化2#		颗粒物	12. 5	30	mg/m^3	是旦	_
		焦化2# 干熄焦	2017-10-20	二氧化硫 颗粒物	38 9. 6	100	$\frac{\text{mg/m}^3}{\text{mg/m}^3}$	是 是	_
		T児馬 CRT屏锥			J. U	50	mg/m^3	疋	_
		分离设	2017-10-16	颗粒物	13	120	${\rm mg/m^3}$	是	_
			2017-10-16	非甲烷草烃	0.6	_	mø/m³	_	_
									_
	4								
			2017-10-16	颗粒物	11. 9	120	mg/m^3	是	_
玉田县	_{玉田县} 生资源开		0015 10 10	W.T. 1/2. 11.6	10.0	0.0	/ 2	ы	
		碎生产	2017-10-16	颗粒物	10. 9	30	mg/m³	是	_
	司	洗衣机							
		、空调							
			2017-10-16	颗粒物	11	120	${\rm mg/m^3}$	是	-
		电冰箱							
		预拆解							
友 有 限 公	电拆电拆塑碎洗、拆电冰解视解料生衣空解冰箱线机线破产机调线箱	2017-10-16 2017-10-16 2017-10-16	颗粒物	0. 6 12. 8 11. 9 10. 9	- 120 120 30	mg/m³ mg/m³ mg/m³ mg/m³	- 是 是 是	_	

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数																		
		2*35t循		二氧化硫	63	200	mg/m^3	是	=																		
		环流化		氮氧化物	48	200	mg/m^3	是																			
		床		林格曼黑度	<1	1	级	是																			
		<i>//</i> \		颗粒物	9.61	30	mg/m^3	是	1																		
		35t40t		二氧化硫	72	200	mg/m^3	是	1																		
		各一台		氮氧化物	94	200	mg/m^3	是	=																		
		循环流		林格曼黑度	<1	1	级	是	_																		
		化床		颗粒物	8.92	30	$\mathrm{mg/m^3}$	是	_																		
		75T循环		烟尘	10. 1	20	mg/m^3	是	_																		
		硫化床			二氧化硫	0	50	mg/m^3	是	_																	
		锅炉		氮氧化物	79	100	$\mathrm{mg/m^3}$	是	_																		
		44万万		林格曼黑度	<1	1	级	是	_																		
		备煤粉 碎机		颗粒物	13. 7	30	${\rm mg/m^3}$	是	-																		
		干熄焦		二氧化硫	10	100	mg/m^3	是	-																		
		地面站		颗粒物	17.6	50	mg/m^3	是	-																		
		田畤菇		二氧化硫	35	50	mg/m^3	是	Ī																		
		甲醇预 热炉		氮氧化物	134	200	mg/m^3	是	I																		
		30(3)									颗粒物	13. 4	30	mg/m^3	是	=											
海港经	唐山中润			二氧化硫	23	50	mg/m^3	是	Ī																		
济开发	は 煤化工有 限公司 L	焦炉	2# 3# !#	2017-11-13	2017-11-13	氮氧化物	176	500	mg/m^3	是	I																
X				颗粒物	11.2	30	mg/m^3	是	IÍ																		
				二氧化硫	19	50	mg/m^3	是	-																		
		焦炉2#		氮氧化物	212	500	mg/m^3	是	Ī																		
								颗粒物	12.8	30	mg/m^3	是	-														
							二氧化硫	29	50	mg/m^3	是	IÍ															
		焦炉3#						氮氧化物	319	500	mg/m^3	是	-														
							颗粒物	12.4	30	mg/m^3	是																
						二氧化硫	18	50	mg/m^3	是	I																
		焦炉4#				氮氧化物	391	500	mg/m^3	是	-																
														-					颗粒物	9.45	30	mg/m^3	是	=			
		硫铵除															氨	0.061	30	mg/m^3	是						
		尘		颗粒物	13. 9	80	mg/m^3	是																			
		筛运焦 除尘										ļ 							1			颗粒物	13. 5	30	mg/m^3	是	-
		推焦地		二氧化硫	10	50	mg/m^3	是	1																		
		面站		颗粒物	18.7	50	mg/m^3	是	=																		
				二氧化硫	21	100	mg/m^3	是	Ī																		
		装煤地 面站						苯并(A) 芘	<0.00000 2	0.3	μ g/m3	是	-														
				颗粒物	13. 4	50	mg/m^3	是	İ																		
		1#2#		二氧化硫	4. 77	50	mg/m^3	是																			
		焦炉出		颗粒物	8. 63	50	mg/m^3	是	I																		
		1#2# 破碎		颗粒物	13. 6	30	mg/m^3	是	-																		
		1/2/11		二氧化硫	34. 3	50	mg/m^3	是	-																		
		1#焦炉		氮氧化物	70. 4	500	mg/m^3	是	-																		
		. /111//		颗粒物	10. 3	30	mg/m^3	是	_																		
	ı İ		1	75774477	10.0		m0/ m	~																			

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
		1#筛焦							
		地面除		颗粒物	8. 16	30	mg/m^3	是	-
		尘站							
				二氧化硫	23.8	50	mg/m^3	是	=
	迁安市九	2#焦炉		氮氧化物	81.3	500	mg/m^3	是	=
江宁市	江煤炭储		2017-11-1	颗粒物	11	30	mg/m^3	是	-
迁安市	运有限公	2#筛焦	2017-11-1						
	司	地面除		颗粒物	10.7	30	mg/m^3	是	-
		尘站							
				二氧化硫	28.6	50	mg/m^3	是	-
		3#4#		氮氧化物	88. 2	500	mg/m^3	是	=
		焦炉		颗粒物	10. 2	30	mg/m^3	是	=
	•	3#4#		二氧化硫	3.81	50	mg/m^3	是	_
		焦炉出		颗粒物	10. 9	50	mg/m^3	是	_
		3#4#							
		破碎机		颗粒物	13. 3	30	${\rm mg/m^3}$	是	-
		电厂一		烟尘	3.86	10	mg/m³	是	_
		期、二		二氧化硫	19. 7	100	mg/m^3	是	_
		期锅炉		氮氧化物	14. 1	200	mg/m^3	是	_
		,,,,,,,,,		烟尘	26. 4	80	mg/m^3	是	_
				二氧化硫	5. 95	300	mg/m³	是	_
	迁安市志	焚烧炉		氮氧化物	72. 4	500	mg/m^3	是	_
	诚润滑油		2017-12-19	铅及化合物	<0.013	1	mg/m^3	是	_
	有限公司	放口		镉及化合物	<0.05	0. 1	mg/m^3	是	_
	,,,,,,	7.2.2		氟化物	<0.06	_	mg/m^3	-	_
				氯化氢	13. 5	70	mg/m^3	是	_
		1#粉碎							
		机		颗粒物	10. 3	30	mg/m^3	是	_
		1 4 丁.鸠		二氧化硫	15. 2	100	mg/m^3	是	-
		1#干熄		颗粒物	10.9	50	mg/m^3	是	-
				二氧化硫	14. 3	50	mg/m^3	是	-
		1#焦炉		氮氧化物	283	500	mg/m^3	是	-
				颗粒物	8.66	30	mg/m^3	是	-
		1#硫铵		氨	0.562	30	mg/m^3	是	-
		干燥		颗粒物	9. 52	80	mg/m^3	是	-
		1#炉前						н	
		焦库		颗粒物	10. 1	30	mg/m^3	是	_
		1#筛焦		田五小子小畑	1.0	200	/ 3	Ħ	
		楼		颗粒物	10	30	mg/m^3	是	_
				二氧化硫	8.55	50	mg/m^3	是	_
		1#推焦		颗粒物	11. 1	50	mg/m^3	是	
		1 # 壮/		二氧化硫	11.4	100	mg/m^3	是	_
		1#装煤		颗粒物	11.6	50	mg/m^3	是	
		2#翻车		田星本学 州州		20			
		机		颗粒物	9. 42	30	mg/m^3	是	_
		2#粉碎		田岳本学生	10.0	20	m.c. /3	目.	
		机		颗粒物	10. 9	30	mg/m^3	是	_
		2#干熄		二氧化硫	24.8	100	mg/m^3	是	-
1		4世 湿		颗粒物	11.4	50	mg/m^3	是	_

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
				二氧化硫	5. 72	50	mg/m^3	是	-
		2#焦炉		氮氧化物	289	500	mg/m^3	是	-
	迁安中化			颗粒物	9. 28	30	mg/m^3	是	=
迁安市	煤化工有	2#硫铵	2017-11-20	氨	1.59	30	mg/m^3	是	=
江女山	限责任公	干燥	2017-11-20	颗粒物	9. 1	80	mg/m^3	是	=
	司	2#炉前 焦库		颗粒物	9. 92	30	mg/m^3	是	-
		2#筛焦 楼		颗粒物	9.86	30	mg/m^3	是	_
				二氧化硫	2.86	50	mg/m³	是	
		2#推焦		颗粒物	12. 9	50	mg/m^3	是	=
		O 쓰 사 사		二氧化硫	15. 3	100	mg/m^3	是	-
		2#装煤		颗粒物	10. 9	50	mg/m^3	是	П
				二氧化硫	3.81	50	mg/m^3	是	_
		3#焦炉		氮氧化物	262	500	mg/m^3	是	=
				颗粒物	15. 3	30	mg/m^3	是	-
		3#硫铵		氨	1.01	30	mg/m^3	是	П
		干燥		颗粒物	8.09	80	mg/m^3	是	П
				二氧化硫	9. 52	50	mg/m^3	是	=
		3#推焦		颗粒物	10. 4	50	mg/m^3	是	-
		o ㅗ メナー メサナ		二氧化硫	7. 13	100	mg/m^3	是	_
		3#装煤		颗粒物	10. 7	50	mg/m^3	是	_
				二氧化硫	19. 1	50	mg/m^3	是	_
		4#焦炉		氮氧化物	307	500	mg/m^3	是	=
				颗粒物	9.02	30	mg/m³	是	=
				二氧化硫	17. 2	50	mg/m^3	是	_
		5#焦炉		氮氧化物	106	500	mg/m^3	是	=
				颗粒物	14. 7	30	mg/m^3	是	-
				二氧化硫	18. 1	50	mg/m^3	是	-
		6#焦炉		氮氧化物	98	500	mg/m^3	是	-
				颗粒物	5. 5	30	mg/m^3	是	=
		1#高炉 1#出铁 场除尘 器后		颗粒物	11. 2	15	mg/m^3	是	-
		1#高炉 1#料仓 除尘器		颗粒物	8. 79	10	mg/m^3	是	_
		1#高炉2 #出铁 场除尘		颗粒物	10. 1	15	${\rm mg/m^3}$	是	-
		1#煤制 粉除尘 器后		颗粒物	9. 25	10	${\rm mg/m^3}$	是	_
		1#套筒		二氧化硫	2.86	_	mg/m^3	-	-
		宝窑顶		氮氧化物	34. 1	_	mg/m^3	-	
		古缶坝		颗粒物	11.3	30	mg/m^3	是	-
		1#套筒 窑原料		颗粒物	12. 5	15	${\rm mg/m^3}$	是	-

2年高炉	区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
1	<u> </u>	TIALITY (M)		THE (24 1 → 1)/4		111 MATIN/X	MUMINE	411 WV 11 PT	, с <u>н</u> к. м.	VE M. IH XX
					颗粒物	9. 27	15	${\rm mg/m^3}$	是	-
1 性料仓										
I					颗粒物	8. 03	10	mg/m³	是	=
2#出铁 场 颗粒物 8.48 15 mg/m³ 是 — 2#高炉 2#料仓 颗粒物 7.61 10 mg/m³ 是 — 2#套筒 密密頂 3#高房炉 1#出铁 场 颗粒物 8.88 10 mg/m³ 是 — 2#套筒 密原料 3#高炉 1#出铁 场 颗粒物 10.6 30 mg/m³ 是 — 3#高炉 1#出铁 场 颗粒物 9.08 15 mg/m³ 是 — 3#高炉 2#出铁 场 颗粒物 7.81 10 mg/m³ 是 — 3#高炉 2#出长 场 颗粒物 10.1 15 mg/m³ 是 — 3#高炉 2#出长 场 颗粒物 9.19 15 mg/m³ 是 — 3#高炉 2#出长 场 颗粒物 9.19 15 mg/m³ 是 — 3#出铁 场 颗粒物 8.15 10 mg/m³ 是 — 3#在筒 密原 3#在筒 密原 3#在筒 空間 颗粒物 9.44 30 mg/m³ 是 — 3#在筒 3#在筒 2# 2# 颗粒物 9.39 15 mg/m³ 是 — 3#在筒 3#在筒 3*在 3*在 3*在 3*在 3*在 3*在 3*在 3*在 3*在 3*在					700/12/10	0.00	10	11187 111	~	
1					田至本学科加	0.40	1.5	/3	目	
2 # 高护 2 # 採制 粉 類粒物 7.61 10 mg/m² 是 — 2 # 接筒 密密項 類粒物 8.88 10 mg/m² 是 — 2 # 套筒 密原料 類粒物 10.6 30 mg/m² 是 — 2 # 套筒 密原料 類粒物 10.9 15 mg/m² 是 — 3 # 高炉 1 # 料仓 3 # 高炉 2 # 料仓 3 # 高砂 3 # 萬砂 3 # 展制 類粒物 7.81 10 mg/m² 是 — 3 # 高砂 2 # 料仓 3 # 展制 類粒物 8.9 10 mg/m² 是 — 3 # 接筒 密密项 類粒物 9.19 15 mg/m² 是 — 3 # 套筒 密密 類粒物 9.19 15 mg/m² 是 — 3 # 套筒 密密原料 類粒物 9.44 30 mg/m² 是 — 3 # 套筒 密原料 類粒物 9.44 30 mg/m² 是 — 3 # 套筒 密原料 類粒物 9.39 15 mg/m² 是 — 海粒物 9.39 15 mg/m² 是 — 海粒物 9.71 15 mg/m² 是 — 二冷丸 颗粒物 9.71 15 mg/m² 是 — 二冷丸 颗粒物 9.71 15 mg/m² <t< td=""><td></td><td></td><td></td><td></td><td>秋粒初</td><td>8.48</td><td>15</td><td>mg/m²</td><td>定</td><td>_</td></t<>					秋粒初	8.48	15	mg/m²	定	_
2 # 样仓 類粒物 7. 51 10 mg/m² 定 - 2 # 接筒 類粒物 8. 88 10 mg/m² 是 - 2 # 套筒 類粒物 2.9. 4 - mg/m² - - 3 # 高原料 3 # 高炉 10. 6 30 mg/m² 是 - 3 # 高炉 1 # 出快 類粒物 9. 08 15 mg/m² 是 - 3 # 高炉 1 # 財 包 類粒物 9. 08 15 mg/m² 是 - 3 # 高炉 3 # 高炉 類粒物 9. 08 15 mg/m² 是 - 3 # 高炉 類粒物 9. 08 15 mg/m² 是 - 3 # 高庁 類粒物 9. 08 15 mg/m² 是 - 類粒物 9. 10 mg/m² 是 - 期粒物 9. 10 mg/m² 是 - 期粒物 9. 19 15 mg/m² 是 - 3 # 套筒 新校物 8. 15 10 mg/m² 是 - 3 # 套筒 新校物 9. 44 30 mg/m² 是 - 3 # 套筒 新校物 9. 44 30 mg/m² 是 - 3 # 套筒										
2#媒制 粉 颗粒物 8.88 10 mg/m² 是 — 2#套筒 密密頭 短短物 2.9.4 — mg/m² — — 2#套筒 密原料 3#高炉 1#出铁 场 颗粒物 10.6 30 mg/m² 是 — 3#高炉 1#料仓 3#高炉 2#出铁 场 颗粒物 7.81 10 mg/m² 是 — 3#高炉 2#出铁 场 颗粒物 7.81 10 mg/m² 是 — 3#高炉 1#料仓 3#高炉 2#料仓 3#高炉 3#高炉 3# 数物 颗粒物 9.19 15 mg/m² 是 — 3#高炉 1#料仓 3#高炉 3# 数h 颗粒物 9.19 15 mg/m² 是 — 3#在管 密密项 3#在管 密密项 3#表筒 空原料 颗粒物 9.19 15 mg/m² 是 — 3#在管 密定科 - 冷礼 洗粒敷 颗粒物 9.44 30 mg/m² 是 — 海板物 9.39 15 mg/m² 是 — 海粒物 9.39 15 mg/m² 是 — 二冷轧 洗粒伸 颗粒物 9.71 15 mg/m² 是 — 二冷轧 洗粒伸 颗粒物 9.44 15 mg/m² 是 — 二次孔 洗粒伸 颗粒物 9.44 15 mg/m² 是 — 二次名 洗粒物 9.44 15 mg/m² 是 <td></td> <td></td> <td></td> <td></td> <td>颗粒物</td> <td>7. 61</td> <td>10</td> <td>mg/m³</td> <td>是</td> <td>_</td>					颗粒物	7. 61	10	mg/m³	是	_
一型					田里本学 hPP	0 00	10	m or /m3	目.	
数氧化物			粉				10		疋	
審審项 製菓化物 29.4 - mg/m² - - 製工物 10.6 30 mg/m² 是 - 類柱物 10.9 15 mg/m³ 是 - 場高原料 3#高炉 1#出铁 類粒物 9.08 15 mg/m³ 是 - 3#高炉 1#科台 類粒物 7.81 10 mg/m³ 是 - 3#高炉 2#料台 類粒物 8.9 10 mg/m³ 是 - 3#高炉 2#料台 颗粒物 9.19 15 mg/m³ 是 - 3#其樹 颗粒物 9.19 15 mg/m³ 是 - 3#集簡 颗粒物 9.19 15 mg/m³ 是 - 3#集簡 颗粒物 8.15 10 mg/m³ 是 - 3#集簡 颗粒物 8.15 10 mg/m³ 是 - 二氧化硫 4.77 - mg/m³ - - 類粒物 9.44 30 mg/m³ - - 颗粒物 9.39 15 mg/m³ - - 一次和 無效物 9.71 15 mg/m³ - - 一次和 上 上 <td></td> <td></td> <td>2#套筒</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2#套筒							
2#套筒 密原料 期粒物 10.6 30 mg/m² 是 - 3#高炉 ##Ach 10.9 15 mg/m² 是 - 3#高炉 ##Ach										_
密原料 3#高炉 1#出铁 场 3#高炉 1#料仓 3#高炉 2#出铁 5 3#高炉 2#出铁 5 3#高炉 2#出铁 5 3#高炉 2#料仓 3#高炉 2#料仓 3#高炉 2#料仓 3#高炉 3#点炉 3#出铁 5 3#高炉 3#出铁 5 3#点炉 3#出铁 5 3#放物 10 mg/m³ 是 — 3#高炉 2#料仓 3#高炉 2#料仓 3#高炉 3#白 3#在物 8.15 10 mg/m³ 是 — 3#高炉 2#料仓 3#高炉 3#白 3#在物 8.15 10 mg/m³ 是 — 3#在衛 客窑项 3#在物 3+在商 客庭料 二冷轧 常化酸 洗拋整 二冷轧 常化酸 洗拋整 二冷轧 常化酸 洗拋整 二冷轧 常化酸 洗土 整机 二冷轧 颗粒物 9.39 15 mg/m³ — 11.1 15 mg/m³ 是 — 12.2 15 mg/m³ 是 — 14.2 15 mg/m³ 是 — 15 mg/m³ 是 — 16 Mg/m³ 2 — — 16 Mg/m³ 2 — — 17 Mg/m³ 2 — — 18 15 15 mg/m³ 2 — 19 15 mg/m³ 2 — — 10 15 mg/m³ 2 — — </td <td></td> <td></td> <td>9#春筥</td> <td></td> <td></td> <td>10.6</td> <td>30</td> <td>mg/m³</td> <td>走</td> <td>_</td>			9#春筥			10.6	30	mg/m³	走	_
3#高炉 1#出铁 场 3#高炉 2#出铁 场 3#高炉 2#出铁 场 3#高炉 2#出铁 场 3#高炉 3#高炉 3#高炉 3#高炉 3#高炉 3#温铁 5 3#盆幣 3#出铁 5 3#其制 粉 3#套筒 窑窑頂 3#套筒 窑窑頂 3#套筒 窑窑頂 3#套筒 窑房料 二冷轧 常化酸 洗拋敷 2 2 3 4 5 3 4 5 8 9 10 ng/m³ 是 - — 3#高炉 3#以 5 3 = 2 2 3 = 2 3 =					颗粒物	10. 9	15	${\rm mg/m^3}$	是	=
1#出铁 场 颗粒物 9.08 15 mg/m³ 是 — 3#高炉 1#料仓 颗粒物 7.81 10 mg/m³ 是 — 3#高炉 2#出铁 场 颗粒物 10.1 15 mg/m³ 是 — 3#高炉 2#料仓 3#高炉 3#出铁 场 颗粒物 9.19 15 mg/m³ 是 — 3#媒制 粉 颗粒物 9.19 15 mg/m³ 是 — 3#媒制 粉 颗粒物 8.15 10 mg/m³ 是 — 3#集簡 密原項 五冷轧 35.5 — mg/m³ 是 — 3#套筒 密原料 二冷轧 常化酸 洗地警 二冷轧 常化酸 洗地警 二冷轧 颗粒物 9.39 15 mg/m³ 是 — 斯粒物 9.39 15 mg/m³ 是 — #数粒 P Y 整机 二冷乳 热拉伸 平整机 二冷乳 颗粒物 9.44 15 mg/m³ 是 — #報]						
3#高炉					颗粒物	9.08	15	${\rm mg/m^3}$	是	=
1#料仓 3#高炉 2#出铁 5/3 5/3 5/4 5/3 5/4										
1					颗粒物	7.81	10	mg/m^3	是	_
2#出铁 场 颗粒物 10.1 15 mg/m³ 是 — 3#高炉 2#料仓 3#高炉 3#出铁 颗粒物 8.9 10 mg/m³ 是 — 3#規制 粉 類粒物 9.19 15 mg/m³ 是 — 3#採制 粉 颗粒物 8.15 10 mg/m³ 是 — 3#套筒 窑原顶 氧化物 35.5 — mg/m³ — — 3#套筒 窑原料 二冷轧 常化酸 洗地絷 颗粒物 9.44 30 mg/m³ 是 — 颗粒物 9.39 15 mg/m³ 是 — 颗粒物 9.39 15 mg/m³ 是 — 颗粒物 9.71 15 mg/m³ 是 — 斯粒物 9.44 15 mg/m³ 是 —					-12 (1 — 12 -			<i>G</i> ,	, -	
50					电点补导 化加	10 1	15	m cr /m ³	旦	_
3#高炉 2#料仓 3#高炉 3#出铁 场 3#煤制 粉 颗粒物 9.19 15 mg/m³ 是 — 3#採制 粉 颗粒物 8.15 10 mg/m³ 是 — 3#套筒 窑窑顶 五半套筒 窑底料 三冷轧 常化酸 洗拋絷 4.77 — mg/m³ — — 3#套筒 窑原料 三冷轧 常化酸 洗拋絷 颗粒物 9.44 30 mg/m³ 是 — 颗粒物 9.39 15 mg/m³ 是 — 颗粒物 9.71 15 mg/m³ 是 — 扩射性 医数机 颗粒物 9.44 15 mg/m³ 是 — 直钢股份 颗粒物 9.44 15 mg/m³ 是 —					本 央不至1/Ω	10. 1	10	mg/m	Æ	
2#料仓 3#高炉 3#出铁 颗粒物 9.19 15 mg/m³ 是 - 3#煤制粉 颗粒物 8.15 10 mg/m³ 是 - 3#套筒 密窑顶 五半套筒 密层料 五次丸 颗粒物 9.44 30 mg/m³ - - 3#套筒 密原料 二冷丸 常化酸洗地紮 二冷丸 热拉伸 平整机 二冷丸 热拉伸 平整机 二冷丸 热拉伸 平整机 二冷丸 热拉伸 平整机 二冷丸 热拉伸 平整机 二冷丸 热拉伸 平整机 二冷丸 热拉伸 平整机 二冷丸 热拉伸 聚粒物 9.71 15 mg/m³ 是 - 黄柳股份 颗粒物 9.44 15 mg/m³ 是 - 首钢股份 颗粒物 9.44 15 mg/m³ 是 -					W7 1/2 1/4	0.0	1.0	/ 2	ы	
3#出铁 场 颗粒物 9.19 15 mg/m³ 是 — 3#煤制 粉 颗粒物 8.15 10 mg/m³ 是 — 3#套筒 窑窑顶 五字色					颗粒物	8. 9	10	mg/m³	是	
53										
3#煤制 粉 颗粒物 8.15 10 mg/m³ 是 — 3#套筒 窑窑项 二氧化硫 4.77 — mg/m³ — — 3#套筒 窑窑项 颗粒物 9.44 30 mg/m³ 是 — 3#套筒 窑原料 二冷轧 常化酸 洗地絷 颗粒物 11.1 15 mg/m³ 是 — 一次轧 热拉伸 平整机 二冷轧 热拉伸 平整机 二冷轧 热拉伸 平整机 上冷乳 热拉伸 平整机 上冷乳 热拉伸 平整机 上冷乳 热拉伸 平整机 上冷乳 热拉伸 平整机 上冷乳 热拉伸 平整机 上冷乳 热拉伸 平整机 上冷乳 热拉伸 平整机 上冷乳 热拉伸 医脓肿 原植物 颗粒物 9.44 15 mg/m³ 是 —					颗粒物	9. 19	15	mg/m^3	是	-
粉										
3#套筒 密窑顶 二氧化硫 4.77 - mg/m³ mg/m³ -					颗粒物	8. 15	10	${\rm mg/m^3}$	是	=
新雲雨 密窑顶 類氧化物 35.5 - mg/m³ mg/m³ 是 - mxi物 9.44 30 mg/m³ 是 - mxi物 11.1 15 mg/m³ 是 - mxi物 9.39 15 mg/m³ 是 - mxi					一氧化硫	4. 77	_	mg/m³	_	_
類粒物										=
窑原料 颗粒物 11.1 15 mg/m³ 是 — 二冷轧 热拉伸 颗粒物 9.39 15 mg/m³ 是 — 热拉伸 平整机 颗粒物 9.71 15 mg/m³ 是 — 首钢股份 热拉伸 颗粒物 9.44 15 mg/m³ 是 —			缶缶坝				30		是	=
五冷轧 颗粒物 9.39 15 mg/m³ 是 - 洗拋絷 二冷轧 颗粒物 9.71 15 mg/m³ 是 - 直钢股份 热拉伸 颗粒物 9.44 15 mg/m³ 是 -					颗粒物	11. 1	15	mg/m³	是	_
常化酸 洗拋絷 颗粒物 9.39 15 mg/m³ 是 — 二冷轧 热拉伸 平整机 颗粒物 9.71 15 mg/m³ 是 — 首钢股份 热拉伸 巫軟机 颗粒物 9.44 15 mg/m³ 是 —					457.174 1/4		10	o, iii		
洗拋絷 二冷轧 热拉伸 颗粒物 9.71 15 mg/m³ 是 — 首钢股份 热拉伸 颗粒物 9.44 15 mg/m³ 是 —					由 巴本宁 h/m	0.20	1.5	m cr /m3	.目.	
二冷轧 热拉伸 平整机 颗粒物 9.71 15 mg/m³ 是 - 直钢股份 热拉伸 颗粒物 9.44 15 mg/m³ 是 -					秋化初	უ . ১স	19	IIIg/III	疋	_
熱拉伸 平整机 颗粒物 9.71 15 mg/m³ 是 — 二冷轧 热拉伸 热拉伸 双數机 颗粒物 9.44 15 mg/m³ 是 —										
平整机 二冷轧 盐物股份 颗粒物 9.44 15 mg/m³ 是 —					颗粒物	9.71	15	mg/m^3	是	-
首钢股份			平整机							
		首钢股份			颗粒物	9. 44	15	mg/m^3	是	_
在第二人/	迁 字市	公司托克	半整机	2017_11_1 <i>/</i>						

区县	企业名称	监测点位	<u>监测日期</u> 2017 11 14	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
足女师	钢铁公司	一炔钢 1#2#转 炉1#二 次烟气	2017 11 14	颗粒物	9. 79	15	mg/m³	是	-
		二炼钢 1#2#转 炉2#二 次烟气		颗粒物	9. 02	20	mg/m^3	是	-
		二炼钢 1#2#转 炉3#二 次烟气		颗粒物	9. 17	15	mg/m^3	是	-
		二炼钢 1#2#转 炉4#二 次烟气		颗粒物	8. 1	15	mg/m^3	是	1
		二炼钢 精炼		颗粒物	8. 72	15	mg/m^3	是	-
		二炼钢铁合金		颗粒物	8. 92	15	mg/m^3	是	-
		废酸再 生站氧 化铁粉		颗粒物	8. 97	30	mg/m³	是	-
		废酸再 生站氧 化铁粉		颗粒物	8. 96	30	${\rm mg/m^3}$	是	_
		料场翻 车机		颗粒物	10	10	mg/m^3	是	_
		汽车受 料槽		颗粒物	9. 1	10	mg/m^3	是	=
		套筒窑 成品仓 除尘器		颗粒物	12	15	mg/m^3	是	_
		一 冷 粒 矫 机 、 焊 机 氧 化 铁		颗粒物	8.96	15	mg/m^3	是	_
		一炼钢 1#2#转 炉1#二 次烟气		颗粒物	9. 36	15	mg/m^3	是	-
		一炼钢 1#2#转 炉2#二 次烟气		颗粒物	9. 16	15	mg/m^3	是	-
		一炼钢 1#2#转 炉3#二 次烟气		颗粒物	9. 03	15	mg/m³	是	-

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数							
<u> </u>	企业有例	一炼钢	<u> </u>	<u> </u>	肝以水及	你任限但	排从平位	定百込你	但你行奴							
		1#2#转														
		炉4#二		颗粒物	8.87	15	${\rm mg/m^3}$	是	=							
		次烟气														
		一炼钢3	1													
		#转炉														
		5#二次		颗粒物	9.51	15	mg/m^3	是	-							
		烟气														
		一炼钢3														
		#转炉6														
		#二次		颗粒物	8.41	15	mg/m^3	是	-							
		烟气														
		一炼钢	1													
		铁合金		颗粒物	8.95	15	mg/m^3	是	_							
		原煤运		颗粒物	9. 05	10	mg/m³	是	-							
秦皇岛	艾尔姆风			苯	0. 202	-	mg/m	- -	_							
经济技		11#废气	2017-11-17	甲苯及二甲												
术开发	品(秦皇	排口		苯合计	0.0971	_	mg/m^3	_	_							
	天河(保	再生工	0017 10 00	伝	4. 64	=	mg/m^3	=	=							
保定市	定)环境	序	2017-12-26	非甲烷总烃	1.2	80	mg/m^3	是	_							
				甲苯	0.0602	-	mg/m^3	_	-							
			2017 12 21	二甲苯	<0.0015	-	mg/m^3	-	П							
		三部总	2017-12-21	苯	0.0225	1	mg/m^3	是	İ							
		- #2#		非甲烷总烃	1. 28	50	mg/m^3	是	-							
			2017-12-21	甲苯及二甲	0.0617	20	/3	目								
			2017-12-21	苯合计	0.0617	20	mg/m^3	是								
				甲苯	<0.0015	40	${\rm mg/m^3}$	是	_							
										2017-12-21		<0.0015	70	mg/m^3	是	_
					非甲烷总烃	13.36	120	mg/m^3	是	-						
		制造二		苯系物	<0.0015	12	mg/m^3	是	_							
		部烘干	2017-12-21	甲苯	<0.0015	40	mg/m^3	是	-							
		工序	2011 12 21	二甲苯	<0.0015	70	mg/m^3	是	-							
		-L/1'		非甲烷总烃	13. 36	120	mg/m^3	是	_							
			2017-12-21		<0.0015	1	mg/m^3	是								
			2017-12-21	甲苯及二甲	0.003	20	mg/m^3	是	_							
			2011 12 21	苯合计												
				甲苯	<0.0015	40	mg/m³	是	_							
			2017-12-21		0.48	70	mg/m³	是	_							
				非甲烷总烃	0. 92	120	mg/m³	是	-							
		制造二		苯系物	<0.0015	12	mg/m³	是	_							
			2017-12-21	甲苯	<0.0015	40	mg/m³	是	_							
	长城汽车	, . , . ,		二甲苯	0. 48	70	mg/m³	是	_							
北市区	公司		非甲烷总烃	0. 29	120	mg/m³	是	-								
1,3,1,4		2017-12-21	苯	<0.0015	1	mg/m³	是									
			2017-12-21	甲苯及二甲	1. 5415	20	mg/m^3	是	-							
				苯合计												
			0015 10 01	甲苯	0.877	40	mg/m³	是	_							
			2017-12-21		16. 5	70	mg/m^3	是	_							
I				非甲烷总烃	15. 99	120	mg/m^3	是	_							

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
		制造三		苯系物	<0.0015	12	mg/m^3	是	İ
		部烘干		甲苯	0.877	40	${\rm mg/m^3}$	是	
		工序	2017-12-21		16. 5	70	${\rm mg/m^3}$	是	_
		上/丁		非甲烷总烃	15.99	120	mg/m^3	是	1
				苯	<0.0015	1	mg/m^3	是	-
			2017-12-21	甲苯及二甲 苯合计	1. 0948	20	${\rm mg/m^3}$	是	-
				甲苯	0.065	40	mg/m^3	是	=
			2017-12-21		1. 27	70	mg/m^3	是	=
				非甲烷总烃	0.96	120	mg/m^3	是	-
		生1.24.一		苯系物	<0.0015	12	mg/m^3	是	Ī
		制造三		甲苯	0.065	40	mg/m^3	是	Ī
		部喷涂	2017-12-21	二甲苯	1.27	70	mg/m^3	是	Ī
		工序		非甲烷总烃	0.2	120	mg/m^3	是	П
				苯	<0.0015	1	mg/m^3	是	
			2017-12-21	甲苯及二甲 苯合计	6. 317	20	mg/m^3	是	I
		二车间 铅粉2#	2017-10-26	铅及化合物	0.09	0. 5	mg/m^3	是	_
		二车间 铅粉工	2017-12-7	铅及化合物	0.06	0. 5	$\mathrm{mg/m^3}$	是	-
		二车间 铸板工 序1#	2017-10-26	铅及化合物	0.03	0. 5	mg/m^3	是	_
		二车间 铸板工 序2#	2017-12-7	铅及化合物	0. 02	0. 5	${\rm mg/m^3}$	是	-
	→ to on w	二车间	2017-10-26	铅及化合物	0. 28	0. 5	${\rm mg/m^3}$	是	-
清苑县	风帆股份 有限公司	三车间装配工	2017-12-7	铅及化合物	0.01	0. 5	mg/m^3	是	_
	清苑分公 司	四车间 装配2#		铅及化合物	0. 01	0. 5	mg/m³	是	-
		一车间 、二车 间合膏	2017-10-26	铅及化合物	0. 15	0. 5	${\rm mg/m^3}$	是	-
		一车间		铅及化合物	0.01	0.5	mg/m^3	是	=
		铸板工		铅及化合物	0.01	0.5	mg/m^3	是	-
		一车间 铸板工 序2#	2017-12-7	铅及化合物	0. 19	0. 5	mg/m^3	是	-
			2017-10-26	铅及化合物	0.02	0. 5	mg/m³	是	-
		铸带拉		铅及化合物	0.02	0. 5	mg/m^3	是	=
			2017-10-26		0. 26	0. 5	mg/m^3	是	=
		装配分	2017-12-7	铅及化合物	0. 24	0.5	mg/m^3	是	-
				烟尘	46	80	mg/m^3	是	İ
				砷、镍及其 化合物	0. 011022	1	mg/m^3	是	_

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
				铬、锡、锑					
				、铜、锰及	0.05634	4	mg/m^3	是	=
	河北风华			其化合物					
涞水县	环保服务	焚烧炉	2017-12-12	二氧化硫	7	300	mg/m^3	是	_
<i>1</i> 1777.2	有限公司	90/90/9		氮氧化物	90	500	mg/m^3	是	_
	11 IV A 11			汞及化合物	0.08	0.1	mg/m^3	是	_
				铅及化合物	0.0025	1	mg/m^3	是	_
				镉及化合物	0.000004	0.1	mg/m³	是	-
				林格曼黑度	<1	1	级	是	=
				氟化氢	6	7	mg/m³	是	=
		A CONTRACTOR		氯化氢	62.8	70	mg/m^3	是	_
		1#铅粉		铅及化合物	0.14	0.5	mg/m^3	是	_
		机		713013	****	0.0		,	
		1#装配		铅及化合物	0.04	0.5	mg/m^3	是	_
		工序		713117			0,	, , ,	
		2#装配		铅及化合物	0.03	0.5	mg/m^3	是	_
		工序		7131172				, ,	
	4n nn w	工业车		铅及化合物	0.09	0.5	mg/m^3	是	_
	风帆股份	间铸板					<i>G</i> ,	, -	
徐水县	有限公司	铅零件	2017-11-9	铅及化合物	0.06	0.5	mg/m^3	是	_
	工业电池	工序3#					<u> </u>	, -	
	分公司	全免车		40 77 /L A 1/4			/ 2		
		间手工		铅及化合物	0.03	0.5	${\rm mg/m^3}$	是	=
		装配工							
		全免车		铅及化合物	0.06	0.5	mg/m^3	是	_
		间铸板							
		全免车		たロコルル人を加	0.00	0 5	/ 3	H	
		间自动		铅及化合物	0.02	0. 5	mg/m^3	是	_
	户 · 日 TE	装配工		一层儿水	1.0	150	/ 3	H	
	安新县硕	短窑/熔铅锅	2017-10-23	二氧化硫	12	150	mg/m^3	是	_
安新县	兴有色金 属熔炼有			氮氧化物 铅及化合物	10	200	mg/m ³	是 是	
					0.1		mg/m ³	是	_
	限公司				5	30	mg/m^3		_
	河北港安 环保科技 有限公司	金锅+熔	2017-10-23		24 <3	150 200	mg/m^3 mg/m^3	是 是	
				铅及化合物	0. 09	200	mg/m³	是	
安新县				颗粒物	4	30	mg/m^3	是	
				二氧化硫	<2.86	150	mg/m ³	是	
				<u>二氧化號</u> 氮氧化物	<3	200	mg/m ³	是	_
			2017-11-30	铅及化合物	0.06	2	mg/m ³	是	_
				颗粒物	3	30	mg/m	是	_
安新县	河北松赫 再生资源 股份有限 公司	探 熔	2017-11-29	二氧化硫	71	150	mg/m	是是	_
				<u></u> 氮氧化物	26	200	mg/m	是	=
				铅及化合物	0.11	2	mg/m	是	_
				颗粒物	3	30	mg/m^3	是	=
	4 7	焦化厂		42Y1-4-1/ 4		- 50	0/ 111	,-,	
		焦炉地		颗粒物	12. 1	30	mg/m^3	是	_
		面除尘	0015 10 5	45/14/14					
		焦化厂	2017-12-7	二氧化硫	38	50	mg/m^3	是	=
		/m/[U/	I	— +\ [L L H) IL	00	00	1119/ III	~	

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
		焦炉烟		氮氧化物	170	500	mg/m^3	是	_
		气		颗粒物	18	30	mg/m^3	是	_
		炼铁		氮氧化物	102	300	mg/m^3	是	-
		厂!#360		二氧化硫	14	180	mg/m^3	是	-
		烧结机		颗粒物	14. 9	50	mg/m^3	是	-
		炼铁厂		氮氧化物	37. 7	300	mg/m^3	是	-
		2#360烧	2017-12-8	二氧化硫	16. 7	180	mg/m^3	是	-
		结机机		颗粒物	13. 4	50	mg/m^3	是	=
		炼铁厂		氮氧化物	114	300	mg/m^3	是	=
		3#360烧		二氧化硫	84	180	mg/m^3	是	_
		结机机		颗粒物	26. 1	50	${\rm mg/m^3}$	是	_
		炼铁厂		颗粒物	14.9	25	m or /m3	是	
	宣化钢铁	高炉1#	2017-12-4	秋松初	14. 3	25	mg/m^3	定	-
宣化区	集团有限	炼铁厂	2017-12-4	颗粒物	14. 7	25	mg/m^3	是	
	责任公司	高炉2#		秋松初	14. (25	mg/m	疋	_
		炼铁厂		颗粒物	18. 1	25	m cr /m3	是	
		高炉3#		秋松初	16. 1	25	mg/m^3	疋	_
		炼铁厂	2017-12-5	颗粒物	19. 6	25	m cr /m3	是	
		矿槽1#	2017-12-5	秋松初	19. 0	25	mg/m^3	疋	_
		炼铁厂		颗粒物	10 /	25	m or /m3	是	
		矿槽2#		秋松初	18. 4	25	mg/m^3	定	=
		炼铁厂	2017-12-7	田里本学生	16 E	25	m or /m3	是	
		矿槽3#		颗粒物	16. 5	25	mg/m^3	定	=
		炼铁厂	2017-12-6	氮氧化物	83	300	mg/m^3	是	_
		球团2#		二氧化硫	12	180	mg/m^3	是	_
		出口		颗粒物	24. 3	50	mg/m^3	是	_
		炼铁厂		氮氧化物	139	300	${\rm mg/m^3}$	是	_
		球团出		二氧化硫	22	180	mg/m^3	是	-
		口		颗粒物	21. 1	50	mg/m^3	是	=
		炼铁厂	2017-12-4	颗粒物	10	30	mg/m^3	是	_
		烧结机	2017 12 4	本央不至 1 20	10	30			
		01减压		二氧化硫	<1	100	mg/m^3	是	-
		加热炉		氮氧化物	40	150	mg/m^3	是	_
		排气筒		颗粒物	7. 7	20	mg/m^3	是	=
		02常压		二氧化硫	<1	100	mg/m^3	是	=
		加热炉		氮氧化物	42	150	mg/m^3	是	_
		排气筒	2017-11-14	颗粒物	6.81	20	mg/m^3	是	=
		03C0炉	2017-11-14	二氧化硫	3.49	100	mg/m^3	是	=
		(<u></u>		氮氧化物	70	200	mg/m^3	是	_
		催)排	-	颗粒物	16. 4	50	mg/m^3	是	=
		04余热		二氧化硫	<1	100	mg/m^3	是	=
		锅炉		氮氧化物	48	200	mg/m^3	是	=
		(三		颗粒物	9.85	50	mg/m^3	是	=
	中国石油 天然气股	06连续	2017-11-15	二氧化硫	17.5	100	mg/m^3	是	=
				211111111	61	150	mg/m^3	是	=
	份有限公	热炉排		颗粒物	8.79	20	mg/m^3	是	=
	司华北石	07脱沥		二氧化硫	46	100	mg/m^3	是	_
	化分公司	青加热		氮氧化物	29	150	mg/m^3	是	=
		炉排气		颗粒物	8	20	mg/m^3	是	-

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
		08沥青		二氧化硫	5.06	100	mg/m^3	是	1
		炉排气		氮氧化物	37	150	mg/m^3	是	
		筒		颗粒物	13.8	20	mg/m^3	是	_
		09减粘	2017-11-14	二氧化硫	3.76	100	mg/m^3	是	-
		加热炉	2017-11-14	氮氧化物	47	150	mg/m^3	是	_
		排气筒		颗粒物	14.7	20	mg/m^3	是	_
		10加氢		二氧化硫	<1	100	mg/m^3	是	=
		1#加热		氮氧化物	56	150	mg/m^3	是	П
		11加氢		二氧化硫	<1	100	mg/m^3	是	_
		2#加热		氮氧化物	53	150	mg/m^3	是	Ţ
		炉排气		颗粒物	11.5	20	mg/m³	是	=
		1号烟气		二氧化硫	12. 2	100	mg/m³	是	=
	创冠环保	排口		氮氧化物	140. 1	300	mg/m^3	是	Ţ
安次区	(廊坊)	311	2017-12-29	颗粒物	11. 2	30	mg/m³	是	=
	有限公司	2号烟气	2011 12 23	二氧化硫	12.8	100	mg/m³	是	=
	13174	排口		氮氧化物	168. 4	300	mg/m³	是	_
				颗粒物	10. 3	30	mg/m^3	是	_
		CRT切割 车间排 气筒		颗粒物	2	120	mg/m^3	是	-
	河北万忠 废旧材料 回收有限 公司	电冰箱 拆解车 间排气	2017-12-20	颗粒物	1. 5	120	mg/m^3	是	.1
永清县				颗粒物	1.8	120	mg/m^3	是	Г
		塑料破 碎工序 排气筒		颗粒物	2. 3	120	${\rm mg/m^3}$	是	ı
	廊坊莱索索 思环境限公 司		2017-12-14	烟尘	7.4	80	mg/m^3	是	=
				砷、镍及其 化合物	0.0005	1	mg/m^3	是	-
				铬、锡、锑、铜、锰及其化合物	0.081	4	${\rm mg/m^3}$	是	l
永清县				二氧化硫	<3	300	${\rm mg/m^3}$	是	-
				氮氧化物	64	500	mg/m^3	是	-
	17			林格曼黑度	1	1	级	是	_
				氟化物	0.07	_	mg/m^3		-
				氯化氢	4.1	70	mg/m^3	是	ı
		物化车		硫酸雾	2.92	45	mg/m^3	是	-
		间排气		颗粒物	3.5	120	mg/m^3	是	=
	衡水睿韬 环保技术 有限公司	环保废	2017-12-7	烟尘	22	80	${\rm mg/m^3}$	是	_
				二氧化硫	3	300	mg/m^3	是	=
				氮氧化物	116	500	mg/m^3	是	_
桃城区				林格曼黑度	1	1	级	是	=
				一氧化碳	6.6	80	mg/m^3	是	_
				氟化氢	0.21	7	mg/m^3	是	_

区县	企业名称	监测点位	监测日期	监测项目	排放浓度	标准限值	排放单位	是否达标	超标倍数
				氯化氢	46.09	70	mg/m^3	是	_
衡水经 发	衡制 公京有司	京华制 管1#锌 锅废气 排气筒	2017-12-19	颗粒物	7	120	${\rm mg/m^3}$	更	1
		京华制 管2#锌 锅废气 排气筒	2017-12-19	颗粒物	27	120	${\rm mg/m^3}$	是	-
		京华制 管3#锌 锅废气 排气筒	2017-12-19	颗粒物	8	120	mg/m^3	是	-
		京华制 管4#锌 锅废气 排气筒	2017-12-19	颗粒物	6	120	${\rm mg/m^3}$	是	-
		京华制 管5#锌 锅废气 排气筒	2017-12-19	颗粒物	25	120	mg/m^3	是	=
		京华制 管6#锌 锅废气 排气筒	2017-12-19	颗粒物	6	120	mg/m^3	是	-
		京华制 管7#锌 锅废气 排气筒	2017 12 19	颗粒物	5	120	${\rm mg/m^3}$	是	-